# INTEGRATING FORMAL METHODS INTO SOFTWARE DEPENDABILITY ANALYSIS

John C. Knight and Luís G. Nakano

Department of Computer Science
University of Virginia
Charlottesville
Virginia, USA

# THE USE OF FORMAL METHODS

Improve Quality
Improve Devel. Efficiency
Fairly Easy To Use
Ready For "Prime Time"





Complicated Mathematics Not Practical
Too Many Resources



# **HYPOTHESES**





# **QUESTION**

- There Are Many Excellent Formal Techniques, Including:
  - Formal Specification
  - Specification Analysis
  - Refinement/Reification
  - Correctness Proofs
  - Property Proofs

Slide 4

• But, Comprehensive Formal Analysis Of Large Systems Is Impractical, So:

#### To which parts of a system should formal techniques be applied?

Need A Means Of Determining Where They Can Be Applied Most Effectively



#### APPLICATION AND EVALUATION

• Formal Specification Has Been Used Extensively, For Example:

- Statecharts

By Airbus, Guidant, Boeing

- Z

By IBM, Praxis

- SCR/Core

By NRL, Lockheed

- PVS

By JPL, Rockwell Collins

- Various Evaluations Performed, For Example:
  - Craigen, Gerhart, Ralston (NIST)
  - Ardis et al. (Lucent)
- Previous Work Did Not Address Breadth Of Use:
  - Evaluation Criteria Tended To Be Technical, Performance Oriented

Slide 5

# WHY BE FORMAL IN SW DEVELOPMENT?



#### SW IN SYSTEM DEPENDABILITY ASSESSMENT

- Software Provides Lots Of Functions:
  - Are They All Critical?

- Do They All Fail The Same Way?
- Typical Practices—Assume Only One Software Failure Event, And:
  - Try To Measure Probability Of Failure By Life Testing
  - Or Set Probability Of Failure To One
  - Or Maybe Zero
  - Or Maybe Model Using A "Reasonable" Distribution
- Software System Life Testing:
  - Its Generally Infeasible

(Butler And Finelli)

- Its Worse Than That

(Ammann, Brilliant, And Knight)

# **SOFTWARE STRUCTURE**



- Model Software Using Its Component Structure
- Analogy With Hardware Analysis



#### COMPONENT MODEL OF SW DEPENDABILITY





#### COMPONENT INTERACTION MODEL



#### University of Virginia Reactor System



# **SOFTWARE FAULTS**



# INTEGRATED ROLE OF FORMAL TECHNIQUES



#### **CONCLUSIONS**

- Software Not Well-Integrated With System Dependability Assessment
- No Precise Role For Formal Techniques In Development
- Formal Techniques Don't Contribute Directly To System Dependability Assessment
- Component Model Of Software Dependability Developed
- Based On:
  - Component Software Design
  - Component Interaction Model
  - Integration Of Component Analysis In System Fault Tree
  - Enhancement Of Software Design Based On Fault-Tree Analysis

